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SUMMARY

Y

The dynamic equations of multi-body systems in the form of open
chains are derived by applying the principles of linear and angular momen-
tum to each individual member in the chain. This results in the appearance
of constraint forces and torques in the dynamic equations. Using more or
less classical approach these unknown forces and torques can be eliminated.
Another approach is to approximate these forces by elastic and viscous
forces by allowing small violations of the constraints. The well-known
elimination procedure leads to a small densely coupled system of equations
while the lesser-known procedure of approximating the constraint forces
and torques yields a large but less densely coupled system. Both these
procedures are first explained in the context of a single rigid body and then
applied to a system of rigid bodies in an open chain where each body is
coupled directly to at most two neighbours.

RESUME

Les équations dynamiques d’un systéme de plusieurs corps disposés en
chaines ouvertes sont dérivées en appliquant les principes de la quantité de
mouvement et du moment cinétique a chaque membre de la chaine. Il en
résulte que des contraintes de force et de couple se dégagent des équations
dynamiques. Par une démarche plus ou moins classique, on peut éliminer
ces forces et ces couples inconnus. Une autre solution consiste a remplacer
ces forces par des forces d’élasticité et de viscosité approximatives, en
violant quelque peu les contraintes. La méthode classique d’élimination
donne un petit systéme d’équations fortement couplées, tandis que la
méthode moins répandue d’approximation des contraintes de force et de
couple produit un grand systéme d’équations moins fortement couplées.
Les deux méthodes sont appliquées d’abord a I’étude d’un corps rigide
unique, puis a I’étude d’un systéme de corps rigides disposés en une chaine
ouverte ol chaque corps est couplé directement a au plus deux corps voisins.
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DYNAMICS OF MULTI-BODY SYSTEMS
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1.0 INTRODUCTION

e R

During the last two decades there has been a considerable interest in the study of multi-body
systems, that is systems consisting of a finite number of interconnected rigid bodies. Typical examples
are manipulators, linkages in machines and mechanism of human body provided each part is considered
as rigid. Although the general principles of obtaining the equations of motion of such systems have been
known since the days of Euler (1707-1783) and Lagrange (1726-1813) yet there is a need for finding
general and computer oriented methods as the formalism suitable for analytical purposes may not be
convenient for computer simulation. Most of the recent work (Refs, 1-3) is therefore devoted to ob-
taining methods that are efficient and general enough to be applicable to a wide variety of multi-body
systems with a minimum amount of preparatory work.

S e TRt TITS TR

The purpose of this report is to explain in as simple a way as possible some of the methods of
deriving the equations of motion of multi-body systems. To accomplish this we assume that we are
given a system of n rigid bodies connected together in an open chain such that each body is coupled
directly to at most two neighbours as shown in Figure 1.

| RO,

FIG. 1
The bodies are attached to each other either by ball-and-socket joint, universal joint or by pin joint*.

The principles of linear and angular momentum (Newton’s and Eulers’s law) applied to each
: individual body in the chain provide a simple way of writing the equations of motion of a multi-body

i system. However, this results in the appearance of unknown constraint forces and torques. There are
now essentially two approaches for removing them. In the classical approach these forces and torques
are eliminated from the 6n second-order differential equations resulting in at most 3n+3 equations cor-
responding to the number of degrees of freedom. The equations so obtained are complicated and
densely coupled. In the other approach each body is kept as a free body and the constraint forces and
torques are approximated by elastic and viscous forces by allowing small violations of the constraints.
(They can also be approximated numerically by solving the equations of motion and constraint equa-
tions simultaneously.) The number of equations to be solved in this approach is more than that solved
in the first approach. However, they are simple and less densely coupled and may be as convenient to
solve on the computer as the smaller number of more complicated equations.

, ‘ Apart from the introductory section the report is divided into four sections. In Section 2 we

\ present the equations of motion of a single rigid body in Newton-Euler’s form as well as in Lagrange’s
form and establish the connection between the two sets of equations. The motion of a single body with
constraints is discussed next in Section 3. Using Lagrange multiplier method the idea of constraint
forces and torques is explained. The equations of motion are formulated using the two approaches

. * Relative motion of two adjacent bodies is a pure rotation with one, two or three degrees of freedom
' according as it is a pin joint, universal joint or ball-and-socket joint.




mentioned above. In Section 4 the ideas developed in Sections 2 and 3 are extended to multi-body
systems. The case when all connections are ball-and-socket joints is considered first. This is followed
by the case when the joint may be universal or pin joint. Conclusions are presented in Section 5.

2.0 RIGID BODY EQUATIONS OF MOTION

The equations of motion of a rigid body can be written down by applying the principles of
linear and angular momentum or by using the Lagrange’s equation. The principles of linear and angular
momentum yield

d?r,
m— = F @)
dL,

pra 2

where r_ is the position vector of the centre of mass, m is the mass of the body, L is the angular
momentum about the centre of mass, F is the sum of external forces and G is the sum of external
torques with respect to the centre of mass C. Equations of motion (1) and (2) are valid in an inertial
(spatially-fixed) frame of reference 0XYZ (see Fig. 2). Since L. = Iw, where I is the inertia matrix
about the centre of mass and w is the absolute angular velocity Equation (2) will take a simple form if
the components of the angular momentum are referred to a body-fixed axes, in particular to the
principal axes. (I is a constant diagonal matrix when referred to the principal axes.)

FIG. 2

The body-fixed set of axes are obtained from the inertial axes by performing three successive rotations.
Before the first rotation the two set of axes are parallel. The first rotation is made about the Z-axis
through an angle Y counterclockwise to obtain an intermediate axes C x,y, Z. A new set of axes x,,
Y1, 2, is now obtained by rotating the axes x,, y,, Z by an angle § counterclockwise about the y, -axis.
The final rotation is carried out about the x, -axis through an angle ¢ to obtain the body-fixed axes
x,y,z. The transformation matrix R connecting the body-fixed axes to the inertial axes is given by
(see, for example, Refs. 4, 5)




Ry Rys Ry
R=]1R:;, R;; Ry, 3)

Ri; R;: Ry

Ry; = cosy cosf, Ry, = cosy sind sing - siny cosg
R,3 = cosy sinf cosp + siny sing, R,; = siny cosf
R, = siny sinf sing + cosy cosp, R,3 = siny sinf cosp - cosy sing
R;, = -sinf, R;, = cosf sing, Ry; = cosd cosg.
. The three angles y, 8, ¢ specifying the orientation of the body are called Euler’s angles. In terms of the

Euler angle rates ¢, 0, ¥ (dot denotes derivatives with respect to time) the components w, , w,,w, of
the angular velocity w expressed in body-fixed axes are given by

W, = ¢~ ¥ sind
w, = ¥ cosf sing + écos¢ “)
w, = 11/ cosd cosp - 6 sing.

Let the body-fixed axes be in the direction of principal axes of inertia and let I , L,I, denote
the moments of inertia about three axes. Remembering that the inertial derivative Et— (Iw) = lw +

wx Iw in the body-fixed axes, Equation (2) becomes

Bk

I @y -~ (4, - Lwyw, = G,
. 1, &, - (I, - L)wew, = G, (5)
L w, - - LHww, =G,.

These are Euler’s equations of motion for a single rigid body. Euler’s Equation (5) together with Equa-
tion (4) and Newton’s Equation (1) yield six second-order differential equations for the determination
ofx.,y. z.,¢,0 and {.

We mention that from computational point of view it may be convenient to solve Equation (5)
and Ecéuapion (4) when inverted as first-order equations in w,, wy, w,, ¢, 8 and Y. Solving Equation (4)

, for ¢, V¥ we obtain
' ¢ = w, + tand (w, sing + w, cosp)
g = Wy o8P - w, sing (6)
e Ve 1
J/ = ;s; (wy sing + w, cosp)
' ‘ for 6 + /2.

o

T




L‘mrmw“ = e e e

Let us now determine the equations of motion using Lagrange’s equation

d /oT oT
—_ - —= ; i= ,2,...,6,
dt (adi) aq, - W v

where T denotes the kinetic energy, q; the ith generalized co-ordinate, q; the generalized velocity, and
Q; the ith generalized force. Assuming again the body-fixed axes in the direction of the principal axes
we have

1 2 .2 . 1
=—2-m (xz+y:+zg) +§(Ix w: +Iy c.):,+lz w:) (8)

withx_,y., 2,9, 0, ¢ as the six generalized co-ordinates. Substituting Equation (8) into Equation (7)
we obtain the Newton’s Equation (1) for the centre of mass from the first three equatinns with Xc» Yoo
z as generalized co-ordinates:

d?x, d?y, d?z,
mdtz = F,, m—cF=F2, m a0 = F, 9)

where F, , F,, F; are the components of F expressed in inertial frame. For the other three co-ordinates
$,0, Y we get

_ oT oT
Py = -55 = Liw,, b—¢5— = (I,-L)w,w,
_ oT ., aT . P -
Py = % = I, w, cosp - T, w, sing, Y I wy ¥ cosd - I, w, ¢ sind sing - I,w, ¥ sinf cosg
(10)
_ T . . aT
py = 3-‘1-’ = - Iy w, sinf + I, w, cosd sing +I,w, cosd cosp, ﬁ =0

where Py> Po and p, denote the generalized momenta. Thus the Lagrange’s equation corresponding to
the co-ordinates ¢, 8, y can be written as

Py -~ (,-Lwyw, = G,
Pp + (w, sing + w, cosp) (I,w, + tand sing I, w, + tand cosp I,w,) = G, (11)
i’w = G,
since
I, w, w cosf + (I,w, sing +I,w, cosp) \b sin@
= Liwy(w,ysing + w, cosp) + (Iyw, sing + I, w, cosp)(w, sing + w, cosp)tand

from Equation (6). Equations defining p,, ps, p, can be inverted to give




L . ot ke .. .
- R PR Y RN E DI S A -

-5 -
wy = pyfly
wy = il; [i%% (py *+p, sinf) + p, cos¢] (12)
w, = il; [—2%3 (py +p, sind) - p, sin¢]-

For rotational equations, Equations (11) and (6) with w, , w,, w, defined by Equation (12) may
therefore be used instead of Euler’s Equation (5) and Equation (6). By comparing Equations (5) and
(11) it is easily seen (note the expressions for p,, py, P ) that

Gl = Gx
G, = Gy cosg - G, sing (13)
G; = -Gy sinf + cosf (G, sing + G, cosd).

By inverting Equation (13) we get G, , Gy, G, in terms of G, G;, G3:
Gy, = G,

sing .
G, =G, cosp +—- (G, sind + G;) (14)
cosf

G, = -G, sing + =2 (G, sind + Gy).
cosf

3.0 RIGID BODY WITH CONSTRAINTS

Before considering the multi-body dynamics let us first consider the case of a single body with
constraints. The constraints reduce the number of degrees of freedom. For example, if a point of the
body is fixed the motion is a pure rotation, called gyroscopic motion, and has three degrees of freedom.
For a pin joint we have only one degree of freedom and so on for other types of joints.

3.1 Gyroscopic Motion

Let us assume that a point, say H, of the body is fixed. Let CH = ¢ be expressed in body-
fixed axes. From Figure 2 we can write the constraint relation as:

ry =r. + Re =« (15)
where « is a constant vector. Equation (15) is a vector equation and is equivalent to three scalar equa-

tions. Due to constraint Equation (15) there is a constraint force fy; acting on the body at the hinge
point H. The Equations of motion (1) and (2) must be replaced by

d?r
m dt; = F + fy (16)
Iw + w x Iw =G + ¢ x RTf" am

where it is assumed that f}; is expressed in the inertial frame and the superscript T denotes the trans-
pose of a matrix. Since constraint force f}; is unknown, Equations (16) and (17) cannot be solved.




There are now two ways to proceed. Either eliminate the constraint force f;; and reduce the number
of equations to three or approximate the unknown force f;;.

The usual procedure to eliminate the constraint force fy; is to differentiate twice the con-
straint Equation (15):

2 2
d*ry  d°r

dt? dt?

+ Rlwxc+wx(wxec)=0. (18)

d?r
Eliminating ?c— from Equations (16) and (18) we obtain

fy = -mR(wxc+wx(wxc))- F. (19)
Substituting Equation (19) into the rotational Equation (17) we obtain
Io+wxIw=G-mex(Wxc+wx(wxec))-cxRTF (20)
where we have used the fact that R"! = RT. Since
ex(wxe+wx(wxe)) = ((cc)E - ccT)cb +wx ((c* ¢)E - ccT)w,
Equation (20) can be rewritten as
Iy O+wxlyw=G-cxRIF (21)

where I}, , the inertia matrix about fixed point H, is given by

"Iy = I+m((c*c)E - ccT),

(cc) is the dot product ¢ c and E is the unit 3 x 3 matrix. Equation (21) is the desired rotational
equation representing the three degrees of freedom which can be solved to determine the orientation
of the body. Having solved this, the constraint force fy; can be determined from Equation (19).

We mention that Equation (21) can be obtained directly by applying the principle of angular
momentum about the point H. However, we would not obtain the hinge force that may be required to
monitor the stress on the joint.

In writing down the modified Equations of motion (16) and (17) it was assumed that the
constraint Equation (15) gives arise to the constraint force f};, This can also be obtained by using the
Lagrange multiplier method (Refs. 5, 6). The kinetic energy T for the Lagrange method is augmented
by the introduction of Lagrange multipliers A, , A, A;:

L =T+X; (x, +(Re)y - ay) + A5 (. + (Re)z - o) + A5 (2, + (Re); - a3) (22)

where T is defined as in Equation (8) and (Rc);, o;, i = 1, 2, 3 denote the components of the vectors
Rc, a in the inertial frame. The equation

d faL) L . d’x,
- v I — = Q yields m =F, + .
<

dt \a ax, dt?
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Therefore A, can be identified with the first component of f;. Similarly A, and A; can be equated to
the second and the third components of f; respectively. To see that the torque due to constraint
force f,; is given by ¢ x RT f;; we compute the contribution of augmented terms to the Lagrange equa-
tions. Denoting these terms by g, ;2,843 we have

) 0 0
81 T AT %’ (Re), gyo = AT _3-0_ (Rc), gy; = AT a_ll: (Rce) !

where AT = (A, A; A;). Since R = R & (Ref. 4), where

0 —W3 Wy i
w = w3 0 - W,
-w2 wl 0 " E
i &
i
it follows that
0o o 0
oR
—=R}0 0 -1
9¢
0o 1 0
0 sin¢g cos¢
oR
_2)—0— = R [ -sing 0 0
~ cos¢ 0 0
0 —-cosfcosp  cosfsing
oR
ﬁ =R cosf cos¢p 0 sinf
~cosfsing -sinf 0
Let g4, 8y » 81, denote the components of g = ¢ x RTfy; =&RTf,. Then
ng = (0 _C3 Cz )RT fH F—
gHy = (C3 0 "cl)RTfH

gHZ = (—Cz (3] O)RTfH.

T

Evaluating g;;; we have

0 00

3 aR 3R\T
8 RTa—¢(Rc)=)\T—c=cT( > A=cTl0 0 1RTA=(0 -c; c)RTA = gy,.

3¢ 3¢
0 -1 0




In a similar way we can show that
€u2 = Byy COSP - gy, sing

By3 = ~8yy Sin0 + cosd (gy, sing + gy, cosp)

‘Luj

and this proves the assertion. We note that the torques g}y, gy, 843 would be needed if the Lagrange’s
equations are used instead of Euler’s equations.

Rather than eliminating the constraint force f,; using Equation (19) we may define it approxi-
mately and solve the six second-order Equations (16) and (17). For this we replace the Lagrange multi-
plier terms in Equation (22) by a potential function V:

L=T-V (23)

where V is given by
1 2 2 2
v = 2 K, (xg-;)* + Ky(yy ~@)* + K,(2y4 - a3) (24)

and K, , K, , K, are large positive constants (Ref. 7, pp. 516-518). The introduction of the potential
function V means that the constraint Equation (15) is replaced by elastic springs with spring constants
K., K, and K,. The components of the spring force is therefore given by

oV
fo =z - — = —Kx (XH -o ) Xy = X + (Re); §
BxH :
§
¥
oV _ ;
fay =~ Gy = 7Ky O - ki vy = v+ (R, ;
'
;
v '
fHZ = - —az—H = —KZ (ZH - 013); zH = zc +(Rc)3'

Another way to approximate the constraint force is to define the dissipation function

f== (K iy + K, vy + K, ) (25)

(SN

where K; , K'y , K; are large positive constants and determine the components of the constraint force
from the relations:

of '
fux =~ 37 = "Kx xy

axH

of '
ny < e o -Ky YH

oYy

of '
fu, = - S-z: = -K,; 2y




In this way the constraint force is approximated by the viscous damping force. Of course, the con-
straint force may be determined by combining the elastic and damping force or by defining V and f in
other ways than that done in Equations (24) and (25).

Rather than approximating the constraint force analytically through the use of penalty
functions such as V and f we may approximate the constraint force numerically (Ref. 3) by solving the

equations of motion and constraint equaticn simultaneously. To do this the equations are first written
in the form

F (u,0,t) = 0. (26)

Now given u, = u(t,) it is required to find u,,; = u(t,,,) wheret, =nhandhis the time step. Using
for example the backward Euler method Equation (26) becomes

Upey ~ Uy
F (unﬂ’ h * t"nﬂ) =0 (27)

which is solved for u,,, using Newton-Raphson method and sparse matrix techniques.

This method is not considered further and is mentioned here only for the sake of complete-
ness.

3.2 Body with Universal Joint

Let us now consider the motion of a rigid body connected to a fixed body with a universal
joint. The rigid body has now two rotational degrees of freedom. For definiteness sake let

¢ =0, (28)
Due to this constraint there will be a constraint torque g;; and Equation (17) must be replaced by
IO +wxlw = G + gy +ex R, (29)

In the body-fixed axes the unit axes of rotation are p, = (-sinf 0 cosf )Y and p, = (0 1 O)T.
Since the constraint torque g, , by definition, is perpendicular to both these axes of rotation we have

gy, cosd - gy, sind = 0 (30)
gy = 0. (31)

Equations (30) and (31) can also be obtained by the Lagrange multiplier method. For this let
L, =L+ X\ 9 (32)

where L is given by Equation (22). Due to the extra term A, ¢ we have the constraint torque gy such
that

81 = s B4z = 0, 843 = 0. (33)
Using Equation (14) with ¢ = 0 we obtain

Bux < A 8uy < 0 Ey: ~ A, tand. (34)
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Eliminating A4 from Equation (34) we have gy, cosd - g, sind = 0 and Gy, = 0.

To obtain the equations of motion with the least number we must eliminate f; and gy from
Equation (29). Eliminating fy (see Eq. (21)) we have

I © + wxIyw = G+gy - cxRTF. (35)

To eliminate g,; we premultiply Equation (35) by the row matrices pf =(-sin@ 0 cosf) and
pl=0 1 0):

pl (Iy G+ wxIyw) = pf (G- cxRTF)+p! gy

p; Iy wtwxIjw) = pI (G—chTF)+p} gy

From Equations (30) and (31) it follows that p;r €g = 0 and p} gy = 0. Hence the two rotational
equations are

pl Iy @+wxIy w) = p; (G-cxRTF) (36)

Pl (Iy @+wxIy w) =p' (G- cxRTF) (37)
where w (Eq. (4) with ¢ = 0) is given by
—d./ sinf
w = 6
JJ cosd

Instead of eliminating the constraint torque g;; and constraint force fy; from Equatjon (29)
(or g, from Eq. (35)) we may determine them approximately and solve the six second-order Equa-
tions (16) and (29) (or three Eq. (35)). For this we can use the same procedures as discussed in
Section 3.1. For example, the term )\, ¢ in Equation (32) may be replaced by the negative of a potential
function V.

1
Let V = 2 K,¢? where K, is alarge positive constant. Then

av av ov

8H1"‘5;=‘K¢¢, 8H2=’5‘6=0, 8H3=‘a_\;‘0- (38)
Using Equations (14) and (38) and assuming ¢ small we get

8ux <= —K¢¢c gHy =0, 8z ~ -l(¢¢ tand. (39)

We now show that this obvious choice of V is not good enough. From Equation (30) we see
that gy, = 0 for & = n/2. However, g, as defined in Equation (39) does not tend to zero as
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6 = w/2 (unless ¢ = 0). Moreover g, becomes infinite as 6 — m/2. To correct this situation we set

Bux = ~(K,cos0)9, gyy = 0, gy, = -(K,sind)¢p (40)

1
which is obtained by defining V = 2 (K, cosf)¢?.
We remark that since fy is defined in terms of ry; or its derivative it may be computationally
advantageous to replace Equation (16) by its equivalent form

dry
dt?

m = F+mR(wxc+wx(wxe)) + 1, (41)

d2rc

dt?

which is obtained by substituting the value of from Equation (18) into Equation (16).

4.0 MULTI-BODY EQUATIONS OF MOTION

In this section we derive the equations of motion of a system of n rigid bodies connected
together by hinges in an open chain such that each body is connected directly to at most two rigid
bodies.

4.1 Systems with Ball-and-Socket Joints

First we consider the case when all hinges are ball-and-socket joints. The relative motion of
any two neighbouring bodies is therefore a pure rotation with three degrees of freedom. Consider three
neighbouring bodies i-1, i and i+1 in the chain as shown in Figure 3. Let CH;_| =L;; ,CH;=L; ;,.

FIG.3

As in Equations (16) and (17) the equations of motion of body i can be written as:

d’r, , . .
m, —d_t?= F! + f"i“l + f'ﬁ‘” (42)
Lo + wixfjw; = G+ L, x(Ri)Tf"‘ii‘l +Li‘i”x(Ri)Tf"}ii” (43)

-




.12 -

where f““ and f"i+l are the constraint forces on body i at the hinges H,_, and H;; F! is the sum of

external forces acting on body i; G' is the sum of external torques; m;, I; and w; respectively are the
mass, inertia matrix and the absolute angular velocity of body i; r; = 0C; and Riis the transformation
matrix from body i to the inertial frame. By summing the translatxonal equatxons fromi=1tonwe
obtain the equation of motion of the centre of mass of the system:

— =3 Fi 4
mae ot (44
where
21 m; is the total system mass, (45)
i=
1 n
— 21 myr; is the system centre of mass. (46)
m i=

In deriving Equation (44) we have used the fact that the constraint force on body i at hinge H; is equal
and opposite to the constraint force on body i + 1 i.e.

fithi = _fiitl i=1,2,...,n"1, 417
1,0 _ = fn,n+1
Also fH 0 fH .

The motion of the system can now be determined from Equations (43) and (44) provided the constraint
forces are known.

4.1.1 Determination of Constraint Forces

As in the case of a single rigid body we shall obtain first the equations of motion by eliminating
the constraint forces. The constraint equations at the hinges H;, i=1,2,...,n-1 are

(48)

ri"‘l + Ri*lLi,,l’i = I; + RiLi.i"‘l; i=1,2,-..,n‘1.

From the translational equations of bodies i and i + 1 we have

1 i fn 1 i+1
— = (F'+ "+ f"
dt? m; ( )

2
d Tisy

1 . . .
- —— i+ +1,i i+],i+2
yrv — (F*1 4 fitli 4 fithiv2),

Subtracting Equation (50) from Equation (49) and using Equation (47) we obtain

L . 1 L
_ 1 by 1 + 1 fhitl - — f*Li*2 = g §=12 ...,n"1
mj H 1 my,, H

m; m,
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; where
' d?r, d?r
4 =—t - —2t (L i o1 g (52)
1 dtz dtz miﬂ mi

Equation (51) with fg‘l =0= f;‘{'“*l represents a tridiagonal system and can be inverted easily by using

Thomas algorithm. Let A denote the inverse of the matrix representing the tridiagonal system of equa-
tions. Then

vl _ "\ . o
fH j§1 a“-dj, i=1,2,...,n-1. (63)
) Our next task is to express d; in terms of L; ;| and L;,; ;. Differentiating the constraint Equation (48)

twice with respect to time we obtain

2 2
d L d Ti+1

dt? dt?

= R™! (@441 xLisy i + Wieg X (WiegxLigy ;)
. - Ri (‘bi X Li,i"’l + wi X ((di X Li,i"’l )). (54)
Substituting Equation (54) into Equation (52) we obtain

di = Ri+l (‘bi"'l X Li"‘l,i +(0i...] X (wiﬂ X Li"'l,i))_ Ri((a.Ji X Li,i"’l

1

mi4 my

. . )
+ Wi x (Wi x Lyje)) + ( R F’); i=1,2,...,n-1. (55)

, Thus the constraint forces can be determined from Equations (53) and (55). We note that Equation (19)
; is a special case of Equation (53) withn=2,m,; ==, w; =0, fH = -f{l»z. We also mention that this
method of deriving the constraint forces is different from that used in References 1 and 2.

4.1.2 Elimination of Constraint Forces

To eliminate the constraint forces from the rotational Equation (43) we need to evaluate the
expression

Li.i—l X (Ri)T f:-,li—] +Li,i+l X (Ri)T fli:liﬂ (56)
| Substituting Equation (53) into Equation (56) we obtain

o0l
-Lijp x (RY)T Z, 1,9 * Ly X (RHT 5 e

-1

iid;- (57)

' From Equation (55) we see that the terms containing &, are:

- - - . L e N - . . - - . —— j
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Ljj-1 x RY [ai-l,j “:’j X Lyjer - ai—l,j—ld’j X Lj.j-n]
(58)

ij . .
- L xR [aij Wi x Ly jey - 8- w5 % L,-J-,]

1 where R = (R.i)T R’ denotes the transformation matrix from reference frame j to i. Using the identity
Ax (Bx C)=(A-: C)B- (A B)C the first term in Equation (58) can be rewritten as

Liioy x Ry @y x Ljjey) = 2y [(Li'i_l » RIL j, RYG; - (L, * RYG)RIL |, 1]
= ai—l.j(Li,i—l R‘JLj,j+lRlle - Rl"Lj'j.,.lL{i_lRuwj)

f Lo .
" = a;_ RYRI'L ;| RILj ;4 E- Ljo LT )RV & (59)

Hence Equation (58) can be simplified as
-R &R0 (60)
where the matrix K;; (i,j=1, . . . ,n) is given by
K = -wi [LiT,i-l RY (ai_y 1Ly jo 1351 o1 L, oy )
~Liit RO @yl o - ai.j—lLiJ-l)]E
+ (801 3L o1~ 8imp o L jo1 DL i

T
= (@Ler - 801 Lo i ie (61)
withL; o =0= L, n+1. Using the fact that a;; = a;; it is easy to see that f(iljj = kji.

Similarly combining the w; and F terms in Equation (57) we get

—Rijwj X f(jiwj +Nj + uy; (62)
o T 3
N;j = ~wjw; [(ai,j-ll‘i.iﬂ - 8i-1,j-1Lii-1) x RIL; 5,
=~ (5L 541 — 8-y jL5-1) X Riij,jﬂ] (63)

1
v = m; [("i-l,j - 8y o)l ey - (a5 8y 50)

Lm,,] x (Ri)T W, (64)
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Using Equations (60) and (62), the rotational Equation (43) for body i,i =1,2, ... ,n, can be written
as

n " . n . . n
j§1 RUK;Rio; + j§1 Riw; x Kjw; = G + j§1 (N + uy) (65)

where
K = Kyj,i=j
= Ii + f{ii'i=j'

Equations (44) and (65) give the required 3n+3 scalar equations of motion.

4.1.3 Approximate Determination of Constraint Forces

Instead of determining the constraint forces f:i *1 from Equation (53) exactly we shall now
use approximate methods discussed in Section 3.1 to determine these forces. Let

Ty = %+ RiL

T = Gep * RYLy
Then the constraint equation at the hinge H; (see Eq. (48)) can be written as:
= 0,

+ ~
Tyi = Ty

Differentiating r:ﬁ twice with respect to t we get

2.+ 2
d°ry _ a*r,,

dt? dt?

L
+ R (‘*’m X Liyg, i + Wieg X (Wijsg X Ljyy, i))-

Using Equation (42) we obtain the following differential equations for t;i, i=1,2...,n-1:

d*r}
. Hi : . . i1 iaq
» m;y, ——-dt2 = Fitl 4 mi+lRl+1 (wi*"l X Li+l,i + Wiy X (wi+l X Li+l,i)) + f;;’l,l + f;:l,H-Z_ (66)
i . .
i 3 To determine the constraint forces approximately we define the potential function

,v Vi "'% K; (’:n - r;li)r (rl:i - r}_li) (67)

where K; is a large positive constant. The constraint force f:; Li jg therefore given by

i+1,1 v AN
firlhi = - il K (ti - T) 171200001 (68)
Hi




where

T = Ty * R

pitl " Lj o1 )i=2.8,...0-1

and rﬁ ) is obtained by solving the differential equation

2 -
d L
dt?

m, =F + mR! (":’1 x Ly 5 + @) x (@ X Ll,z)) + £lh2, (69)

Equations (43), (66) and (69) with constraint forces fi; Li i=1,2,...,n-1 given by Equation (68)

determine the motion of the multi-body system. Comparing these equations with those in Equation (65)
we see that although the number of differential equations to be solved is more, they are less densely
coupled and may be as convenient to solve on a computer as the more densely coupled Equation (65).

h ]
' We mention that the constraint forces may also be determined by defining the dissipation
function
1., .., \T /.4 ‘e
£, = EKi (rHi - l’Hi) ("Hi - "Hi) (70)
‘ where K; is a large positive constant. The force fiﬁ Li js now given by
’ o,
i = _ e = w3t _ -
fh S Ki (rHl er)
ary;
4.2 Systems with Ball-and-Socket Joints, Universal Joints and Pin Joints
We now consider the case when the rotational degrees of freedom at some joints may be less
than three i.e. the hinges may be universal (two degrees of freedom) or pin (one degree of freedom)
. joints. Due to universal and pin joints at the hinges the equations of motion (42) and (43) must be
replaced by
', 1 1
Sh_ i i+
m, i F' + f‘H' + f‘H' (71)
Lo, + w,x Lw, = G+ ghi-l - Rbi*lghbl 4+ . x (RY) fiy~]
+ L iy i+l 2
e X (BY) f™0 (72)
b
\

where gi,'{"‘ denotes the constraint torque on body i at the hinge i- 1 expressed in the ith body axes.

Of course, g'}io =0Q= g';‘”'“.

To determine the orientation of the bodies we need to eliminate not only the unknown
constraint forces but also the unknown torques, The unknown constraint forces can be eliminated in
- the same way as was discussed in Section 4.1, The rotational equations can therefore be written as
' (see Eq. (65)):
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n n
ij ij * ij = O i,i-1 _ pi,itl i+l
Z) RUKRYG + X Rbw;x Ko = Gleg™ - REg b+ TNy vuy).  (73)

i=1,2,...,n. Multiplying Equation (73) by R!! and summing the equations from i = 1 to n we obtain

Rli
1 j

™M>
1 M:

i 1 i=1 i=1 3

" i n . on n . . n
RUK RV, + I RY T Riw xKjw = T Rl (G'+ z (Nij+ui,-)) (74)
i=1 j=

n » I s . . -
since 2 R (g;;"‘ - Rbitlg "‘) =g =0

4.2.1 Determination of Constraint Torques

We now determine the constraint torques giﬁi‘l , 1=2,3,...,n. For this we add all the
rotational equations except the first i~1 equations. From Equation (73) we get

n
z R"‘E R‘”KRklei-Z b Rk’waw= p)

k i=1 k=i j=1 ] REGH + 2 R E (Ny; +w;)
=i i J

k=i k=i j=1

+
k

4 Ms

Rik (gl;*,k-—l - Rk,k+lgli<i+l,k)_ (75)
1

n - Y
Since T Rik (gl;ik»l - Rk.k+lg:l+l,k) = gii-! we have

k=i

;. n n ) n
gl.l—l = ¥ Rik E RkJK Rklw + 2 2 RKiw. x K W) T Rik (Gk + 2 (Nk' +uk.)),
H k=i i=1 k=i j=1 ] k=i i=1 j i

i=23,...n. (76)
4.2.2 Elimination of Constraint Torques

In the presence of universal and pin joints the relative angular velocity of two neighbouring
bodies can be defined in terms of fewer angular rates — two in the case of a universal joint and one for
a pin joint. Let £; denote the relative angular velocity of body i relative to body i-1.

Then
w, = Rl | +Q 17
where
n;
£, = Py Yy *Pi2%2 P33 T j§l P Vpi=23,....m, (78)

n; = 1,2 or 3 according as the hinge is a pin, universal or ball-and-socket joint and p;; are umt vectors
along the axes of rotation. For example in the case of universal joint we may take v;, = wi, Y2 = Oi
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From Equation (4) with ¢ = 0 it follows that pj; = (-sinf; 0 cosb i)T andp;, =(0 1 0)T. Using
Equation (77) we can express w; in terms of w,; and the relative angular rates y;;:

= Rixi-1
w; = R w,_; +

RU-I(RIFL-20 o + Q) + Q,

]

s it
Rbi-2¢ , + RWIQ  +Q

since Rbi-1 Ri-Li-2 = RLi-2  Continuing the above process we obtain

. n .
w,=Rle + Z RY Q. (79)
i=2
“
v In the same way (bi can be expressed in terms of cbl and "y'ij. Differentiating Equation (77) we get
. - "‘_l - .e . s
w; = RYha )+ 0%y P t P t Y (80

, where v, is given by
. ii~1 . . . . B .
v = - x RMTh w4 py vy PR, o PisYise

Using Equation (80) recursively we obtain

i 3 i 13 .y .. LX) i M
@; = Rlle, + jfz RUp; %)y + Pp%p * Pi3Tjs) + ,Ez Rly;. (81)
n
* The rotational degrees of freedomn’ = X n, + 3. Therefore, to determine the orientation
=2

of the multi-body system we require n’ equations. Equation (74) with w; and w; defined by Equa-
tions (79) and (81) provides three equations. To determine the rest of the equations we use Equa-
tion (76). By definition, the constraint torque is perpendicular to the axes of rotation and hence we

have:
piThigi}',i-l =0, i=23,...,n, h,=1,....n. (82)
Substituting the value of gi}""l from Equation (76) we obtain the remaining n'- 3 equations:
l Pin, [k=§i RE jzn:x RUK, RYG; + kzz:i j=£1 Rfwy x Ky o
R - I RK (G“ + (N vy j))] - 0. (83)
k=i j=1
- Substituting the value of c; from Equation (81) into Equations (74) and (83), the equations of motion

' . can be rewritten in the following form:
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. n 1 - nk .
by &y + I (blk ¥er * oo+ by 7k"k> = 1), (84)
biw, + £ (bl 5 +...+bk =fij=23 85
W) 2y \Bikn ier ¥ oot Dy 7kn =5 1=29,...0 (85)
h=1,. M,
where
n n R X
b, = £ X RUKR! (3x3 matrix)
i=1 j=1 )
bx = £ 3 RUK R (3«1 matrix)
k- & Z it Pxn,
=k i=1
n . n ., n ..
fl = ¥ RU (G"" > (Nl +ull)> - 3 R 3 Ruwijjiwj
i=1 i=1 i=1 i=1
n
-z (z $ RUK. R“‘) (3x1 matrix)
k=2 j=k 1=1
h. hA\T
bl = (b“') (1x3 matrix)
h
bk = p > RUK R™*p (scalar)
i ij=k r=i k
h. n N n n n
£i=pl | £ RK[(GK+ T (N, +u)) - = = RNw x K. w.
i plhi [k=i i1 ( Kj kj) kei jo1 R (AJJX ]kwj
-3 3 R”K z Rrky ] (scalar)
r=j j=1

and w, can be evaluated by using the recursive Equation (77). For computing the cross products
appearing in the above equations the relation axb = a b can be used.

4.2.3 Approximate Determination of Constraint Torques

In this section we shall discuss procedures for determining approximately the constraint
torques. Assume first that body i is connected to body i-1 by a pin joint. Let p; denote the unit
vector along the axes of rotation of body i relative to body i-1.

Then

Ri,i—l p, = P, (86)
where R""i"! js the transformation matrix connecting the components of a vector expressed in frame
i-1 to frame i and is given by

Rivi-1 a (Ri)" Ri-1 (87)

bl
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Substituting Equation (87) into Equation (86) and multiplying both sides by R! we obtain l
R-1p, = Rip, (88) |
The constraint Equation (88) gives three scalar equations (only two are independent). Let the three ’
scalar equations be written as j
E, =0, E, =0, E; =0 (89)

As in the case of a single body we now define a potential function V; by the relation

V——I-K(E2+E2+E2 90
i 9 i\l i2 iS) (20)
1 . . . P
. and determine gi;/- l’g’ﬁlz— l,g‘}i‘; ! by the relations
i v, . v, . v,
1,1~ = o e—— . 1,1— = e — , 1,1~ = = — 91
€h1 2, B2 28, €h3 2y, 1)

Having determined these, the components of the constraint torque in the body frame i can be deter-
! ‘ mined using Equation (14):

ii~1 o gii-1
; ng g‘HI
ghi~l = gihi-1 oogp + sing; gii=1 sing. + ghi-1 (92)
Hy H2 i cosh. \HI i H3 )
1
cosg,
Gii-l = _gihi~1 ging + i g~ sing. + ghi-1).
Hz H2 i cosf. \CHI i H3
* i

It should be noted that these components are not required if the rotational equations are written in the
Lagrange form (see Eq. (11)).

We can also express the constraint condition in terms of the Euler angle rates. For this let 2,
denote the relative angular velocity of body i with respect to body i-1. Then there exist two unit
vectors q;, q;, orthogonal to each other such that

T = T =
9, =0, q, =0 (93)

i.e. the relative angular velocity £, is orthogonal to the constraint axes q;, and q;,-

To determine the constraint torque by using Equation (93) we form the dissipation function

f = % K, ((qiTl ni)z + (af ni)z) (94)

- BESs vm-'-mmm
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The components of the torque in frame i can now be obtained from Equations (92) and (95).
Let us now consider the case of a universal joint. In this case there is a vector q; such that
Q' @, =0 (96)

The constraint torque can be determined as above by defining the dissipation function f.:
1_, 2
[ =K (q.T szi) (97)

Example

As an example to the application of determining constraint torques approximately we con-
sider the case of a remote manipulator system with six degrees of freedom — a universal joint at the
shoulder, a pin joint at the elbow and a ball-and-socket joint at the wrist (Ref. 8).

Elbow

Payload

Shoulider Wrist

FIG.4

Assuming the links are rigid it can be treated as a three-body system — upper arm, lower arm and the
payload. (In the terminology used here it should be regarded as a four-body system with the first body
held stationary.) Let the axes of rotations at the shoulder be z and y axes and that at the elbow be y
axis. Expressing Ql = w,; and q; in inertial frame and using constraint Equation (96) we have

¢, cosy, cosf, - (élsim[/l
(cosnpl siny/| 0) qilsim[/lcosfil + éICOSl[/l =0
le ~ qilsinOl
which yields

¢,cosf, = 0 (98)

To find the constraint conditions at the elbow we apply Equation (88) with p, = (01 0)
and obtain
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E,, = cosy,sinf,sing, - siny,cosp, - cosy,sinf, sing, + siny, cosp, =0

= siny,sind,sing, + cosy,cosp, - siny,sinb, sing, - cosy,cosp, = 0

= cosf,sing, - cosb,sing, = 0 (99)

Let us first determine the constraint torque at the shoulder. For this we form the dissipation

function
1 _,.,. 2
=5k (#,cos0,)
and obtain
- gs of . \ s of, s of,
. =- — =-K¢cos’d,, g, =-—5r =0, g, =-— =0,
H1 a¢1 1 1 H2 301 H3 awl
where the superscript S stands for the shoulder. Using Equation (92) we get
i g}slx = - K'(ﬁlcosze,, g,S{y = - K'dilsinolcos()lsind)l, g,sh = - K’q;lsinolcoselco&#l

From Equation (98) it follows that él = 0 and hence ¢, = constant = 0. Therefore for small 9,5 él the
torque can be obtained from the relations:

gf,x = - K'(i)lcoszel, glsiy = 0, gls{z = - K'(ﬁlsin@lcos(‘)l
or (dividing by cosf,) from the equations:
. Gx = - Kéycos8,, g, = 0, g, =- K¢ sinf,. (100)

1
We can also determine the torque by forming the potential function V, =— (Kcosf 1 )¢f. In
this way we have 2

g, = - Kojcosd,, g, =0, g, =- Ko sinf,. (101)

Of course, the constraint torque can be determined by combining Equations (100) and (101).

We now determine the constraint torque at the elbow. For this we define H

v, =

o=

2 2 2
K(E}, + B, + E}) (102)

“ Differentiating partially with regard to ¢, , 6, and ¥, we obtain
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w V2 . 3E,, 3E,, 3E,, |
BT g, T KM T, Ty, TP g
. av ) OE )
8}21Pi="'_2='KEzl_zl'*Ezz_n“Ezs—z'1 (103)
a0, | © a0, 39, 39, |
gz[~1=__a_v_2.=_KFE ——aE21+E ﬂ,\gﬂ
H3 awz i 21 awz 2 awz 23 awz ]

where gizi[ii, i=1,2,3 denote the components of the torque on body 2 at the elbow joint. The torque

components on body 1 at the elbow can be similarly obtained by differentiating V2 partially with re-
spectto ¢,,60,, y,.

Since ¢, =0 it follows from Equation (99) that ¢, =0and ¢, - ¥, =0. Substituting the
values of E, , E,,, E,, from Equation (99) into the first equation of Equation (103) we obtain

gfﬁ = - K [(costlzzsim‘)zsinq)2 - siny,cosp, - cosy, sin6l sing, + siny, cosp,)
(cosy,sind, cosp, + siny, sing, ) + (siny,sind,sing, +cosy,cosp,
- siny,sind, sing, - cosy, cosp, ) (siny,sinf,cosp, - cosy,sing,)
+ (cosf,sing, - cos sing, ) cos62cos¢2].
Using small angle approximations it can be seen that the above expression can be written as

g = K [(w2 - ¥y )sind, + ¢ cos(6,-0)) - ¢2]

Similarly, we have

|
(=]

€E
By <

G5 = - K[~ v)) + ¢ sind, - o, s

Substituting these values into Equation (92) we obtain the components of the torque in frame 2:

g|2|L\ = K[(;p2 = ¥, )sinf, + ¢ cos(0,-0,)- ¢2]
glzll; =0 (104)
g = - K[(\p2 ~ ¥, )cos0, - ¢,sin(0, - el)].
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The components of the constraint torque on body 1 expressed in body frame 1 can be
similarly found. These are given by

"

g:ll:“ -K [(x}z2 - y,)sind, + ¢, - ¢,cos(0, - 01)]
gy, = 0 (105)

B = K [(0; - ¥,)eos8, - 6,sin(6, - 0,)].

We mention that the components in Equation (105) can also be obtained from the relation

1E 2E
8hx BHx
1E = _pl2 2E
8uy R Buy
1E 2E
gHz gHz

where R!? is the transformation matrix connecting frame 2 to frame 1 and can be taken as:

cos(6,-6,) 0 sin(6,-0,)
R = 0 1 0

-sin(@, - 0,) O cos(d,-0,)
2 1 2 1

Having determined the constraint torques the motion of the manipulator can be determined by using
Equations (66), (68), (72), (101), (104) and (105) with n = 4 (n = 3 for Eq. (72)).

5.0 CONCLUSIONS

The principles of linear and angular momentum (Newton’s and Euler’s law) applied to each
individual body in the chain provide a simple way of writing the equations of motion of a multi-body
system. The unknown constraint forces and torques that appear in the equations of motion can be
either eliminated or specified approximately using the constraint equations. It is shown that the
elimination procedure leads to a densely coupled system of second-order equations which can be
written in the vector-matrix form B(y) ¥ = f(y,7.t) where B is an n’ x n' matrix and n’ is the rotational
degrees of freedom. On the other hand the second method of specifying approximately the unknown
forces and torques leads to a system of 6n second-order equations where n is the number of rigid bodies
in the system. The system of equations obtained by this method is simple and less densely coupled.
Both these methods are general and can be easily implemented on the computer.

For studying the dynamics of multi-body systems several other methods, perhaps less
general, have also been proposed. These may be found in References 9 - 14,
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